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ABSTRACT

We describe a method for learning a piecewise affine ap-
proximation to a mappingf : R

d → R
p given a labeled

training set of examples{x1, ..., xn} = X ⊂ R
d and targets

{y1 = f(x1), ..., yn = f(xn)} = Y ⊂ R
p. The method first

trains a binary subdivision tree that splits across hyperplanes
in X corresponding to high variance directions inY . A fixed
numberK of affine regressors of rankq are then trained via a
K-means like iterative algorithm, where each leaf must vote
on its best fit mapping, and each mapping is updated as the
best fit for the collection of leaves that chose it.

Index Terms— Piecewise linear Regression, Partial Least
squares, Sparse Modeling.

1. INTRODUCTION

In this work we discuss a method for building a piecewise
affine regressor of a functionf : R

d → R
p given a set

of training points{x1, ..., xn} = X ⊂ R
d and targets

{y1 = f(x1), ..., yn = f(xn)} = Y ⊂ R
p. The number

of piecesK and the local rankq will be used to control the
complexity of the class of regressors.

With K andq fixed, if we choose to measure error in the
l2 sense, and if we allow any partition of the training data,
optimizing the error on the training set takes the form

argminM1,...,MK

P1,...PK

K
∑

j=1

∑

x∈Pj

||Mj

[

x
1

]

− f(x)||2, (1)

where eachMj is an affine map, and eachPj is a set of
training points using that mapping. The optimal partition de-
pends on the choice of mapping parameters, and the mapping
parameters depend on the choice of partition, but solving
each of these subproblems with the other fixed (on the train-
ing data) is straightforward; this suggests aK-means like
iteration for solving them jointly.

Once (1) has been optimized, there is not an obvious
method to find the target of an unseen test pointx, asx does
not belong to anyPj . One approach is to train a classifier to
discriminate between the variousPj , and assignx to thePj
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decided by the classifier [1]. We have found this approach
to be unsatisfactory. Instead, we will first divideRd into L
piecesQ1, ....QL so that an unseen point can easily be as-
signed to aQ at test time, but so that the partition elements
make sense inY . Here, it is possible thatL ≫ K. We then
modify problem (1) to assign eachQ to a map, instead of
assigning each individual point to a map. We will buildQ via
a hierarchical binary clustering, where each subdivision is via
a hyperplane inRd that attempts to maximize the variance of
the associated subdivision inY .

The contribution of this paper is to build piecewise affine
tree structured models as in [2, 3], but using the subdivision
criteria as in Section 2, and a global energy on the pieces
with an explicit constraint on the rank and number of pieces,
analogous to (1), but operating on eachQs as a group. This
leads to an accurate regressor on challenging problems that
can be applied quickly to unseen test points.

2. PARTITIONING THE TARGET VIA
HYPERPLANE SUBDIVISIONS OF THE DOMAIN

Our final goal is a piecewise linear mapping fromRd to R
p

that mapsX to Y that can be applied efficiently to unseen
data points. We will explicitly demarcate the pieces via a
tree structured binary “clustering” ofX , even though we do
not expectX to have reasonable clusters with respect to lo-
cality in Y . Our first goal is thus to build a binary partition
of Y cutting along large variance directions that is not too
complicated to describe inX .

2.1. Partitioning Y

We assume that nearby points inY are similar, and further-
more, thatY is locally low dimensional in the sense of [4], so
that a locally (inY ) low rank mapping makes sense. In this
case, [4] shows that a multiscale binary clustering ofY ob-
tained by recursively splitting along directions of large vari-
ance adapts to the local geometry. That is: the diameter of the
pieces at the leaves of the binary clustering decays at the rate
one would expect based on the local intrinsic dimension ofY .



2.2. ClusteringX with respect toY

We would like to mirror the clustering onY with a clustering
onX with the property that at test time it is possible to assign
an unseenx to its correct cluster. However, we do not wish to
assume that points inX have reasonable near neighbors that
belong to the same cluster inY .

SupposeY0 ⊂ Y with cardinalityN0, X0 is the corre-
sponding set ofX , and suppose the mean ofY0 andX0 is 0
(in practice we will always center the data we are operating
on). For simplicity, assumeY0 is full rank and thatd, p ≤ N0.
The directionu ∈ R

p of largest variance ofY0 is given by

argmaxu∈Rp ||Y T
0 u||2 s.t. ||u||2 = 1.

This problem is equivalent to

argmaxz∈RN0 ||ΣV
T z||2 s.t. ||V T z||2 = 1,

whereUΣV T is the economy size SVD ofY0,U ∈ R
p×p, V ∈

R
N0×p and the above equivalence can be obtained by letting

UTu = V T z. Our goal is to find a subdivision ofX0 that
splits Y0 across a direction of large variance. We can thus
write z = XT

0 w, and try to findargmaxw∈Rd ||ΣV TXT
0 w||

2

s.t.,||V TXT
0 w||

2 = 1. However, this problem is not suitable
for us becauseXT

0 w may be quite different from its projec-
tion onto the span ofV , asw is not penalized for having large
energy in directions unseen byV T . Thus splittingX0 via w
need not be associated to a good splitting ofY0. Instead, we
use the problem

argmaxw∈Rd ||ΣV TXT
0 w||

2 s.t. ||w||2 = 1, (2)

which does not exactly correspond to finding au of largest
variance inY0, but does still correspond to the idea of concen-
trating the energy ofXT

0 w in the large variance right singular
directions ofY0. Note that (2) is equivalent to:

argmaxw∈Rd ||Y0X
T
0 w||

2 s.t. ||w||2 = 1, (3)

The problem in (3) is a Partial Least Squares Regression
(see [5] and references therein). In fact,XTw gives the first
extracted score vector, or latent vector ofX . However, in-
stead of using it possibly with more score vectors as reliable
predictors, we use that to clusterX recursively.

2.3. Building the tree

As in [2, 3], we will use a regression tree where the leaves of
the tree will point to affine maps instead of function values.
The idea is to get a relatively fine subdivision of the data
into “pure” pieces, but in order to not overfit, there will be
relatively fewer maps, and so many leaves of the tree might
be associated to a single affine map.

We recursively subdivideX andY as above, from the
top down. In the experiments below, we always divide at
the median. Because each decision in the tree is built as

a solution to problem (2) or (4) below, it can be evaluated
with a single inner product in theX space, so efficient out of
training sample extension is built into the construction.

2.4. 2-means

In order to smooth out artifacts from the cluster boundaries, it
is useful to average over many models. One way to inject ran-
domness into the construction is to replace the problem (2),
which has an explicit, deterministic solution, with aK-means
like algorithm, where the randomness comes from the initial-
ization. Note that the difference between the2-means centers
approximates the largest variance direction of the data [6].

To construct the binary partition, we run the2-means al-
gorithm (via Lloyd iteration) onY finding cluster centersy1
andy2, setu = (y1 − y2)

TY , and use

argmaxw∈Rd ||uXTw||2 s.t. ||w||2 = 1, (4)

that is,w = XuT/||XuT ||.

3. BUILDING THE MAPS

It is very important in this construction to average over
multiple realizations of the model to smooth out the harsh
boundaries of the subdivisions. We simply rebuild the model
multiple times (including the tree), and average the outputs
of each model. Once a tree structured partition of the data
has been specified, we will build the regressor by alternating
assignment of each leaf to an affine map, and then updating
the best fit map via least squares.

3.1. Updating the maps and leaf assignments

Once the maps are initialized, we alternate in batch between
updating the best fit mapping for each piece via least squares,
and allowing each leaf in the tree to vote on which piece to
belong. Denote byQ1, ..., QL the partition of the data at the
leaves, andM1, ...,MK the affine maps (here eachM is the
parameters for the map, ap × d matrix and ap vector). Let
yx be the target ofx, then

s(Qi) = argminj
∑

x∈Qi
||Mj

[

x
1

]

− yx||2,

Mj = argminM, rank(M)=q

∑

s(Qi)=j

∑

x∈Qi

||M

[

x
1

]

− yx||
2

Because we fix the subdivision of the data before training the
maps and the assignments of points to maps, at this stage, we
need not worry about the complexity of the partition, as the
job of controlling the complexity of the partitions has been
subsumed in the subdivision scheme. On the other hand,
because the maps are trained against the fixedQ, they can to
some extent make up for the defects in the partition.



Also note that once the partition is fixed, just as inK-
means, these iterations (with suitable arrangements made for
ties) are guaranteed to converge to a local minimum.

4. RELATION WITH PREVIOUS WORK

There is a long history of using trees for regression, e.g.
[7]; there is now a huge literature on the topic. There has
also been a lot of work on piecewise linear models, see the
citations in [8].

Regression trees with affine models on the nodes have also
been studied, e.g. [2, 3]. The method described here differs
from these two in several respects: the method of subdivision,
the structure of the linear maps, and the method of smoothing
the outputs. In [2, 3], subdivisions are chosen along a coordi-
nate axis that reduces the variance of the 1-dimensional target
as much as possible. Section 2 in this work discusses how
to generalize this to multivariate regression and subdivision
along hyperplanes not parallel to the coordinate axes, so that
the subdivision inY more quickly approximates the locally
linear structure there, as in [4]. The affine maps are also built
in a different way in this work. In [2, 3], there is a map for
each node, which is the best fit for all the data associated to
that node; furthermore, the map takes as input only the coor-
dinates used as decisions in the subtree below that node. This
is a kind of adaptive low rank model, but again always parallel
to the coordinate axes (and since in those works they regress
1-d functions, correlations in the output are ignored). In our
model, the rank of each affine map is explicitly fixed, and
there can be far fewer maps than nodes. The affine maps are
chosen via a global optimization with a “coarseness” specified
by the depth of the tree. The global optimization is a version
of theK-means algorithm; or rather, since we use a fixed rank
for each map, a version of theK-q flats algorithm [9] inY .

In this respect, our work is similar to [1], where a similar
alternating minimization algorithm is used to determine the
partition of the data points. However, in that work, the “fea-
tures” used to cluster the data were the “local” affine maps
that were the best fit for a fixed size nearest neighborhood (in
X) of each point. Since we do not assume that nearest neigh-
borhoods inX make sense, in the setting of this paper, these
nearest neighbor clusters also do not make sense; however
one can think of the leaves of our subdivision tree as standing
in for those local clusters. The method in that work does not
have an out of sample extension baked in; rather they use an
SVM to decide which piece a new data point should belong to.

Recently there has been work on a class of piecewise
affine regressors that are not built on an explicit clustering,
instead using sparse coding to simultaneously determine the
“pieces” and the mapping [10, 11, 12]. In those works, a dic-
tionary is trained onX andY simultaneously, so that a data
pointx is coded in theX dictionary, obtaining coefficientsα;
these coefficients are then used to reconstructy = f(x) using
the Y dictionary. These methods have the intuitive appeal

that the preserved structure is inα, and all the action off is
encoded in the correspondence between dictionary elements.
On the other hand, this rigidity also forces theX dictionary,
via the sparse coding problem, to both choose the active set
and the regression coefficients so that theX dictionary re-
constructsx as best it can (as opposed toy). That is: even if
theX dictionary is trained discriminatively, at test time, the
coding problem is reconstructive. The method presented here
can also be interpreted as a coupled sparse model, with the
X dictionary being the concatenation of all the left singular
vectors of each of the mappings, the number of nonzeros used
for eachx equal to the rank of each of the mappings, andY
dictionary being the product of the singular values and right
singular vectors of each of the mappings. However, in this
work, the sparsity is very structured (at most one block ac-
tive), and more importantly, the active set is not chosen by the
dictionary, but rather by the tree. Thus this work is similarto
several recent works on finding the active set in sparse coding
via approximate nearest-neighbor search type data structures
[13, 14]. Recently, [15] alternated between updating an en-
ergy of the form (1) and finding a single representative for
each cluster via the average inX of the points belonging to
that cluster. As in the coupled sparse coding, that method
chooses the representatives via the reconstruction error in X ,
notY , but has the advantage that the partition is trained along
with the mapping.

5. EXPERIMENTS

We compare our algorithm with several other approaches:
coupled dictionary learning [11] (cplDL), linear regression
onk nearest neighbors (knn-LS),K-q flats with Support Vec-
tor Machine (SVM) (kq-SVM), and kq-coupled [15]. Given
a test pointx, the knn-LS algorithm findsk nearest neighbors
x1, · · · , xk from the training setX and finds a linear mapping
Lx by solving a least squares problemmin

∑

i

‖yi−Lxxi‖
2.

Then the response for the test data is predicted asyx = Lxx.
The kq-SVM clusters the training responsesY into K clus-
ters and learns aq-dimensional linear mapping within each
cluster via theK-q flats algorithm. A SVM classifier is also
trained on the training predictorsX with the clustering results
as labels. Then for a test datax, it is first assigned to the best
cluster according to the SVM classifier, thenyx is given by
the q-dimensional linear mapping from the assigned cluster.
This method is used as a substitute for the method in [1],
which was uncompetitive due to its construction with nearest
neighbors inX . On the data sets on which it is computation-
ally practical, we also test against the M5 prime algorithm of
[3], as coded by Gints Jekabsons [17]. We use the SPAMS
package of Julian Mairal [18] for the coupled dictionary
learning, and the package [19] by Pierre Geurts for regression
trees. For all the methods that allow it except the regression
trees, we average over 10 models randomly initialized. The



regression trees we average over 10 reconstructions, each of
which was generated by 100 trees. The parameters for each
of the models were obtained via cross validation

We test on three different data sets; all the results are in
Table 1, where they are measured in mean squared error:

5.1. Simulated Manifolds

In this section, we try to recover a manifold from a distractor
manifold. The predictorX is created byX = T +M , where
both T and M are low dimensional manifolds. Then the
responseY is a function ofT . More specifically, we sam-
ple from [−1, 1] at random, generating(a1, a2) and(c1, c2).
Then we create

T = (sin(2a1), sin(2a2), sin(2a2 + a1),
sin(2a2a1), cos(2a2 + a1), sin(2a2a1))

M = (cos(2c1), sin(c1), sin(c2 + 2c1),
cos(c2c1), sin(c2 + 2c1), cos(2c2c1)).

X is formed byX = R(T + M), whereR is a random
rotation, andY = Q(a1, a2, T1 + T2 + ǫ, 0.1T2), where
Q ∈ R

6×4, QTQ = I and ǫ ∼ N (0, 0.01) i.i.d. 10000
observations are generated for training and 2000 for testing
in the same manner.

5.2. Side by Side Digits

In the experiment, the objective is to learn half of a digit from
the rest of it plus an extra random digit added as a distractor.
More specifically, we randomly choose two digits from the
MNIST database, slightly shift and rotate them, put them
side by side and then cut the right digit in half. The left part
(the left digit and the left half of the right digit) will be the
predictorx and the right part will be the responsey. Both are
vectorized and a pair of(x, y) serves as an observation. Since
each digit in MNIST is a28 × 28 image,x has dimension
1176 andy has dimension 392. The circular shift and rotation
sizes are[−4, 4] and [−60◦, 60◦] respectively. We create
300K observations for the training data set and 10K for the
testing data set. For simplicity, we call this data set SS.

A second data set SS2 is created similarly except that we
cut either the left part of the left digit or the right part of the
right digit, at random. The regressor has to decide which part
was cut.

5.3. Faces

In the experiment, the objective is to learn half of a face from
the other half; here we use no distractors. To build the data,
we take face images from [20, 21], crop the middle portion,
and resize to64 × 64. The first 12000 (funneled) faces are
used as training, and the remaining 1233 are used as the test
set. The training set is augmented by taking all 9 1 pixel shifts
and reflecting each face about the vertical axis. We project

all of the left face halves onto the firstd = 300 principal
components of the left training data, and the right face halves
onto thep = 300 principal components of the right training
data; there are a total of 216000 training pairs; all points are
projected onto the unit sphere.

Fig. 1: Display of the results on SS2. From top to bottom, the groundtruth,
cplDL, knn, kq-SVM, kq-coupled, RT and the proposed.

Table 1: Regression results, in MSE.

manifold SS SS2faces

m5p[3, 17] 45 NA NA NA
cplDL [10, 11, 18] 51 1826 1851252

knn-LS 27 2478 2322305
kq-SVM 56 1846 1906317

kq-coupled [15] 41 1785 1657255
regression trees [22, 19] 28 2085 2135345

proposed 24 1316 1325246

6. CONCLUSION

We presented a method for piecewise affine low rank regres-
sion. The method can be viewed as a regression tree, in the
spirit of [3], but with relatively few affine models, each of
which is associated to multiple leaves on the tree, or as a
coupled dictionary method, with a tree structured encoder.
To build the tree so that the leaves have low variance in the
target and are simple to compute in the domain, we introduce
a splitting method for dividing data along a hyperplane in
the domain that corresponds to a large variance direction in
the target. We show experiments demonstrating that on data
where the target is locally low dimensional, the method can
produce accurate regressions, even when the domain has been
corrupted by structured noise.
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