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ABSTRACT decided by the classifier][1]. We have found this approach

We describe a method for learning a piecewise affine ath be unsatisfactory. Instead, we will fi_rst divided ipto L
proximation to a mapping : R — RP given a labeled p}ecesQl, ....QQr, so that an unseen point can _eaS|Iy be as-
training set of examplezy , ..., z,} = X C R? and targets signed to aQ_at test tlm_e,_ but so that the partition elements
{y1 = f(21), ., yn = f(za)} = Y C RP. The method first mak(_a sense iiy". Here, it is possible that >> K._We then
modify problem[(1) to assign eadd to a map, instead of
assigning each individual point to a map. We will buiddvia

numberk of affine regressors of rankare then trained viaa 2 nierarchical .bir(1iary clustering, where each subdivissoria
K-means like iterative algorithm, where each leaf must voté hyPerplane irk® that attempts to maximize the variance of
on its best fit mapping, and each mapping is updated as t{8€ @ssociated subdivision ifi
best fit for the collection of leaves that chose it. The contribution of this paper is to build piecewise affine
Index Terms— Piecewise linear Regression, Partial Leastm?e s_,tructu_red mo_dels as [ [3, 3], but using the SUbdm.'S'o

. criteria as in Sectiofil2, and a global energy on the pieces
squares, Sparse Modeling. . . . ;

with an explicit constraint on the rank and number of pieces,

analogous to[{1), but operating on eagh as a group. This
1. INTRODUCTION leads to an accurate regressor on challenging problems that

. ) - . _can be applied quickly to unseen test points.
In this work we discuss a method for building a piecewise

affine regressor of a functiofi : R? — RP given a set
of training points{zy,...,z,} = X C R? and targets
{y1 = f(z1),-,yn = f(zn)} =Y C RP. The number 2. PARTITIONING THE TARGET VIA

of piecesK and the local rank will be used to control the HYPERPLANE SUBDIVISIONS OF THE DOMAIN
complexity of the class of regressors.

With K andq fixed, if we choose to measure error in the our final goal is a piecewise linear mapoing fraf to R?
lo sense, and if we allow any partition of the training data, 9 P ppIng

optimizing the error on the training set takes the form that mast oY th.at can b.e applied efficiently .to unseen
data points. We will explicitly demarcate the pieces via a

K tree structured binary “clustering” of, even though we do
argminag,, e Y Y ||1M; [ﬂ — f(=)]>, (1) notexpectX to have reasonable clusters with respect to lo-

P Pre cality in Y. Our first goal is thus to build a binary partition
of Y cutting along large variance directions that is not too
complicated to describe N .

trains a binary subdivision tree that splits across hypewgs
in X corresponding to high variance directionsvin A fixed

j=1zeP;

where each)/; is an affine map, and each; is a set of

training points using that mapping. The optimal partiti@ d

pends on the choice of mapping parameters, and the mapping

parameters depend on the choice of partition, but solving

each of these subproblems with the other fixed (on the trair2.1. Partitioning Y’

ing data) is straightforward; this suggestgsameans like

iteration for solving them jointly. We assume that nearby points¥nare similar, and further-

Once [1) has been optimized, there is not an obviougore, that'” is locally low dimensional in the sense bf [4], so

method to find the target of an unseen test poirdsz does  that a locally (inY’) low rank mapping makes sense. In this

not belong to any”;. One approach is to train a classifier to case, [[4] shows that a multiscale binary clustering’obb-

discriminate between the variody, and assigm: to the P;  tained by recursively splitting along directions of largariv
*Thanks to NSF award DMS-09-56072 (awarded to Gilad Lerman) f ance adapts to the local geometry. That is: the diameteeof th

support at the early stage. pieces at the leaves of the binary clustering decays at the ra
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2.2. Clustering X with respecttoY a solution to problem{2) oi14) below, it can be evaluated

. . . _ . with a single inner product in th& space, so efficient out of
We would like to mirror the clustering ofi with a clustering training sample extension is built into the construction.

on X with the property that at test time it is possible to assign
an unseen to its correct cluster. However, we do not wish to
assume that points iX have reasonable near neighbors that2.4. 2-means
belong to the same cluster in.

Supposeyy C Y with cardinality Ny, X is the corre-
sponding set ofX, and suppose the mean 4f and X is 0
(in practice we will always center the data we are operatin
on). For simplicity, assumg; is full rank and thatl, p < Nj.
The directionu € RP of largest variance ofj is given by

In order to smooth out artifacts from the cluster boundaries
is useful to average over many models. One way to inject ran-
domness into the construction is to replace the problém (2),
Svhich has an explicit, deterministic solution, wittkameans
like algorithm, where the randomness comes from the initial
ization. Note that the difference between thmeans centers
approximates the largest variance direction of the data [6]

To construct the binary partition, we run tBemeans al-
This problem is equivalent to gorithm (via Lloyd iteration) ort” finding cluster centerg;
andys, setu = (y; — y2)7Y, and use

f:u*gmaxueRp||Y0Tu||2 s.t. ||u||2 =1.

argmax, g ||V 2])? st [V = 1,

. ) N argmax,, cpa|[uXw|* s.t.||w|* =1, 4)
whereUXV* isthe economy size SVD &f), U € RP*P, V €

RNexr and the above equivalence can be obtained by lettinghat is ) — XuT /|| XuT|].

UTu = VTz. Our goal is to find a subdivision oX, that

splits Yy across a direction of large variance. We can thus

write z = X 'w, and try to findargmax,,cga||SV7 X w]|? 3. BUILDING THE MAPS
s.t.,||[VT XTw||? = 1. However, this problem is not suitable
for us because&(!'w may be quite different from its projec-
tion onto the span of, asw is not penalized for having large
energy in directions unseen By". Thus splittingX, via w
need not be associated to a good splitting’ef Instead, we
use the problem

It is very important in this construction to average over
multiple realizations of the model to smooth out the harsh
boundaries of the subdivisions. We simply rebuild the model
multiple times (including the tree), and average the owput
of each model. Once a tree structured partition of the data
has been specified, we will build the regressor by altergatin
aumg;rnau(wE]Rd||EVTX0Tw||2 st [|w|]? =1, (2)  assignment of each leaf to an affine map, and then updating
the best fit map via least squares.
which does not exactly correspond to finding: @f largest
variance inYy, but does still correspond to the idea of concen—3 1. Updating the maos and leaf assianments
trating the energy ok’ I w in the large variance right singular =" P 9 P 9
directions ofYy. Note that[() is equivalent to: Once the maps are initialized, we alternate in batch between
updating the best fit mapping for each piece via least squares
and allowing each leaf in the tree to vote on which piece to
Pelong. Denote by, ..., Q1 the partition of the data at the
eaves, and\ly, ..., Mk the affine maps (here eadlf is the
parameters for the map,zax d matrix and ap vector). Let
be the target of, then

argmax, cgal[Yo Xg wl|* s.t.[Jw][* =1, 3)

The problem in[(B) is a Partial Least Squares Regressio
(see[[5] and references therein). In fa&t! w gives the first
extracted score vector, or latent vectorf However, in-
stead of using it possibly with more score vectors as rediabl Y=
predictors, we use that to clust&rrecursively.

. X
5(@0) = angmin, Tscq 15 7] - 1P
2.3. Building the tree . p
. . . Mj = argminy; ankar)=q Z Z || M [1} — ||
As in [2,[3], we will use a regression tree where the leaves of s(On=j 2€Qs

the tree will point to affine maps instead of function values.

The idea is to get a relatively fine subdivision of the dataBecause we fix the subdivision of the data before training the

into “pure” pieces, but in order to not overfit, there will be maps and the assignments of points to maps, at this stage, we

relatively fewer maps, and so many leaves of the tree mighteed not worry about the complexity of the partition, as the

be associated to a single affine map. job of controlling the complexity of the partitions has been
We recursively subdivideX andY as above, from the subsumed in the subdivision scheme. On the other hand,

top down. In the experiments below, we always divide atbecause the maps are trained against the fixetthey can to

the median. Because each decision in the tree is built e®me extent make up for the defects in the partition.



Also note that once the partition is fixed, just asAr  that the preserved structure isdn and all the action of is
means, these iterations (with suitable arrangements neade fencoded in the correspondence between dictionary elements
ties) are guaranteed to converge to a local minimum. On the other hand, this rigidity also forces tRedictionary,
via the sparse coding problem, to both choose the active set
and the regression coefficients so that iedictionary re-
constructse as best it can (as opposeditp That is: even if

There is a long history of using trees for regression, e. t_heX dictionary is trained discriminatively, at test time, the

[7]; there is now a huge literature on the topic. There hagoding problem is reconstructive. The method presenteal her

also been a lot of work on piecewise linear models, see thgan also be interpreted as a coupled sparse model, with the
citations in [8] X dictionary being the concatenation of all the left singular

Regression trees with affine models on the nodes have al getors of each of the mappings, the number of NONZEros used
been studied, e.g[][2] 3]. The method described here diffe §r (_aach:c eql_JaI fo the rank of each (.)f the mappings, z}hc_i
from these two in several respects: the method of subdivjsio ictionary being the product of the singular values andtrigh
the structure of the linear maps, and the method of smoothin ngular vector; of_each of the mappings. However, in this
the outputs. In[[2,13], subdivisions are chosen along a deord . ork, the sparsity Is very structur(_ed (at most one block ac-
nate axis that reduces the variance of the 1-dimensiorngttar tive), and more importantly, the active set is not choserby t

as much as possible. Sectigh 2 in this work discusses hog)'ctionary, but rather by t_he _tree. Thus_this W(.)rk IS simiar .
to generalize this to multivariate regression and subidivis several recent works on finding the active set in sparse godin

; i imate nearest-neighbor search type data stasctu
along hyperplanes not parallel to the coordinate axes,ato thY'a approxima )
the subdivision inY” more quickly approximates the locally [13,[14]. Recently,[[15] alternated between updating an en-

linear structure there, as inl [4]. The affine maps are alsio bui€'9Y of the for_m L) and finding a single_ represent‘_e\tive for
in a different way in this work. InJ2]3], there is a map for each cluster via the average M of the points belonging to

each node, which is the best fit for all the data associated t@hat clustt(:]r. As In thf Eouplgd tshparse co?mgt,_ that ge.”md
that node; furthermore, the map takes as input only the coof100S€s e representatives via the reconstruction ercor |
otY, but has the advantage that the partition is trained along

dinates used as decisions in the subtree below that node. TH|° hth .
is a kind of adaptive low rank model, but again always pakalleWlt the mapping.

to the coordinate axes (and since in those works they regress

1-d functions, correlations in the output are ignored). In our 5. EXPERIMENTS
model, the rank of each affine map is explicitly fixed, and

there can be far fewer maps than nodes. The affine maps ajge compare our algorithm with several other approaches:
chosenviaa glObal Optimization with a “coarseness” Smlfl Coup|ed dictionary |earnin@_l] (Cp|D|_), linear regrmi
by the depth of the tree. The global optimization is a versiorpn . nearest neighbors (knn-LSY-¢ flats with Support Vec-
of the K-means algorithm; or rather, since we use a fixed rankor Machine (SVM) (kg-SVM), and kg-coupled [15]. Given
for each map, a version of th€-q flats algorithm|[[9] inY". a test pointz, the knn-LS algorithm finds nearest neighbors

In this respect, our work is similar tbI[1], where a similar x1,- -,y fromthe training seX and finds a linear mapping

alter_r?ating minimizatio_n algorithm is qsed to determine th L. by solving a least squares problemimz i — Loas]|%.
partition of the data points. However, in that work, the “fea p

tures” used to cluster the data were the “local” affine mapJhen the response for the test data is predicteg.as L,z.
that were the best fit for a fixed size nearest neighborhood (ifihe kg-SVM clusters the training respongésnto K clus-
X) of each point. Since we do not assume that nearest neigters and learns a-dimensional linear mapping within each
borhoods inX make sense, in the setting of this paper, theseluster via thek -q flats algorithm. A SVM classifier is also
nearest neighbor clusters also do not make sense; howeuesined on the training predicto’s with the clustering results
one can think of the leaves of our subdivision tree as standinas labels. Then for a test datait is first assigned to the best
in for those local clusters. The method in that work does notluster according to the SVM classifier, thenis given by
have an out of sample extension baked in; rather they use ahe ¢-dimensional linear mapping from the assigned cluster.
SVM to decide which piece a new data point should belong taThis method is used as a substitute for the methodin [1],
Recently there has been work on a class of piecewis&hich was uncompetitive due to its construction with netares
affine regressors that are not built on an explicit clustgrin neighbors inX. On the data sets on which it is computation-
instead using sparse coding to simultaneously determmne ttally practical, we also test against the M5 prime algoritfim o
“pieces” and the mappin@ [10, 11,112]. In those works, a dic{3], as coded by Gints Jekabsons|[17]. We use the SPAMS
tionary is trained onX andY simultaneously, so that a data package of Julian Mairal [18] for the coupled dictionary
pointx is coded in theX dictionary, obtaining coefficients;  learning, and the packade [19] by Pierre Geurts for regyassi
these coefficients are then used to reconstyuetf (z) using  trees. For all the methods that allow it except the regressio
the Y dictionary. These methods have the intuitive appeatrees, we average over 10 models randomly initialized. The

4. RELATION WITH PREVIOUS WORK



regression trees we average over 10 reconstructions, éachall of the left face halves onto the firdt = 300 principal
which was generated by 100 trees. The parameters for eacbomponents of the left training data, and the right facedmlv
of the models were obtained via cross validation onto thep = 300 principal components of the right training

We test on three different data sets; all the results are idata; there are a total of 216000 training pairs; all poings a
Table[1, where they are measured in mean squared error: projected onto the unit sphere.

Fig. 1: Display of the results on SS2. From top to bottom, the gramnith,

5.1. Simulated Manifolds cpIDL, knn, kg-SVM, kg-coupled, RT and the proposed.

In this section, we try to recover a manifold from a distracto

manifold. The predictoX is created byX = 7'+ M, where .. . n
both 7" and M are low dimensional manifolds. Then the i -
response&’” is a function of7T". More specifically, we sam- .j ¢ =y
ple from[—1, 1] at random, generating, az) and(ci, ). C J "*3"
a1 EE ﬂ I
T = (sin(2a1), sin(2a2) sin(2as + ay), '$': < : + | ot O =
sin(2aqaq ), cos(2as + a1), sin(2aza)) - I |
M = (cos(2¢1),sin(cq ), sin(eg + 2¢1), ' “'*
cos(caer ), sin(ca + 2¢1), cos(2¢acy)). .. . ’
= NHE I
X is formed be = R(T + M), whereR is a random
rotation, andY = Q(ai1,a2,Th + 1o + ¢€,0.1T5), where .. . BE
Q € R QTQ = I ande ~ N(0,0.0l) i.i.d. 10000 {j J G‘ -

observations are generated for training and 2000 for ggstin

5.2. Side by Side Digits

Table 1: Regression results, in MSE.

In the experiment, the objective is to learn half of a diginfr

the rest of it plus an extra random digit added as a distractor ” |manifolq SS | Ssqfaces|||

More specifically, we randomly choose two digits from the m5p[3,17] 45 INA | NA|NA
MNIST database, slightly shift and rotate them, put them cpIDL[10,13/18] | 51 [1826| 1851252
side by side and then cut the right digit in half. The left part knn-LS 27 2478 | 2322305
(the left digit and the left half of the right digit) will be € kg-SVM 56 (1846 | 1906317
predictorz and the right part will be the respongeBoth are kg-coupled([15] 41 [1785| 1657255
vectorized and a pair dfr, y) serves as an observation. Since  [regression tree5[22,119] 28 [2085| 2135345
each digit in MNIST is &8 x 28 image,x has dimension proposed 24 1316| 1325246

1176 andy has dimension 392. The circular shift and rotation
sizes are[—4, 4] and [—60°, 60°] respectively. We create
300K observations for the training data set and 10K for the
testing data set. For simplicity, we call this data set SS. 6. CONCLUSION

A second data set SS2 is created similarly except that we
cut either the left part of the left digit or the right part biet ~We presented a method for piecewise affine low rank regres-
right digit, at random. The regressor has to decide which pasion. The method can be viewed as a regression tree, in the
was cut. spirit of [3], but with relatively few affine models, each of
which is associated to multiple leaves on the tree, or as a
coupled dictionary method, with a tree structured encoder.
To build the tree so that the leaves have low variance in the
In the experiment, the objective is to learn half of a facerfro target and are simple to compute in the domain, we introduce
the other half; here we use no distractors. To build the data splitting method for dividing data along a hyperplane in
we take face images from [20,121], crop the middle portionthe domain that corresponds to a large variance direction in
and resize t®4 x 64. The first 12000 (funneled) faces are the target. We show experiments demonstrating that on data
used as training, and the remaining 1233 are used as the teghere the target is locally low dimensional, the method can
set. The training set is augmented by taking all 9 1 pixetshif produce accurate regressions, even when the domain has been
and reflecting each face about the vertical axis. We projeatorrupted by structured noise.

5.3. Faces
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