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The Nearest subspace classifier (NSS) finds an estimation of the underlying subspace within each class
and assigns data points to the class that corresponds to its nearest subspace. This paper mainly studies
how well NSS can be generalized to new samples. It is proved that NSS is strongly consistent and has
rate of convergence O(n−1/2) under certain assumptions. Some simulations are presented eventually to
verify the theoretical results.
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1. Introduction

The problem of classification is to construct a mapping that can correctly predict the classes of new
objects, given training examples of old objects with ground truth labels [39]. It is a classical problem in
statistical learning and machine learning and has been widely used in computer vision, pattern recog-
nition, bioinformatics, etc. Examples of applications include face recognition, handwriting recognition
and micro-array classification.

More precisely, this problem can be formalized as follows. Given a training data set {(xi,yi)}n
i=1,

where xi ∈X and yi ∈ Y , the goal is to find a function f : X → Y such that f (x) is a good approxi-
mation of y for the given xi’s as well as for new instances x. Typically, X is a continuous domain and
Y is a finite discrete set.

In the past few decades, a tremendous amount of work has been produced for this problem. Many
approaches have been proposed, e.g., K-Nearest Neighbors (KNN) [17, 21, 24], Fisher’s Linear Dis-
criminant Analysis (LDA) [23, 45], Artificial Neural Networks (ANN) [38, 46, 61], Support Vector
Machines (SVM) [9, 15, 47], and Decision Trees (see [10, 43, 44] for some well known algorithms).
We refer to [6, 27] for a more careful overview of classification techniques.

Among this work is a class of methods based on subspace models. The compelling interest in
subspace models can be attributed to their validation in real data. For instance, it has been justified that
the set of all images of a Lambertian object (e.g., face images) under a variety of lighting conditions can
be accurately approximated by a low-dimensional linear subspace (of dimension at most 9) [5, 22, 28].
Another example is that, under the affine camera model, the coordinate vectors of feature points from a
moving rigid object lie in an affine subspace of dimension at most 3 (see [16]). These applications give
rise to modeling data by subspaces; the study of subspace based classifiers is an important branch.

The first work in this category was CLAss Featuring Information Compression (CLAFIC) [60] (also
known as Nearest SubSpace (NSS) classifier [42]; for the information contained in this name, we will
adopt the usage of NSS throughout the paper). In this algorithm, each class is represented by a linear
subspace and data instances are assigned to the nearest subspace. Instead of obtaining good representa-
tion of subspaces in NSS, the Learning Subspace Method (LSM) [30] proposes to learn the subspaces
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based on good discrimination (see [40] for more variants and discussions). The simple idea of subspace
classifiers has been extended to nonlinear versions in various ways; many have shown state-of-the-art
performance (see [12, 34, 53] for example and Section 2.5 for more details). After the first subspace
analysis of face images [29, 55], classification approaches with subspace models have been used suc-
cessfully in face recognition [11], handwritten digit recognition [33], speech recognition [31] as well as
biological pattern recognition problems [41].

Although the design of subspace-based classification techniques has been actively explored, their
theoretical justification is very under-studied. In this paper, we restrict our interests of justification
to analyzing how well the classifiers can be generalized to new samples. By doing so, one can learn
quantitatively how reliable the classification approaches are and can thus also guide the algorithm design
accordingly. For this purpose, a functional (known as risk function) is used to measure the prediction
quality of every classifier. More precisely, we assume X and Y being random variables; instances xi and
yi are drawn independently from the distributions of X and Y respectively. For a classifier f (x), its risk
functional is defined as:

R( f ) = E(X ,Y )1( f (X) 6= Y )

Based on this, the Bayes rule is defined to be the classifier whose risk functional is minimal. The Bayes
rule is optimal in the sense that its expected loss (defined as 1 when the predicted class is not equal to
the truth) is minimal. Note that, since the actual distribution of (X ,Y ) is unknown, the Bayes rule is thus
not available in reality.

A natural desirable property of practical classifiers is having as small risk functional as possible.
In this spirit, the property consistency is defined as the fact that the risk function converges to that
of the optimal Bayes rule as the number of samples goes to infinity. Many classification algorithms,
such as, KNN, SVM, LDA and some boosting methods [1, 4, 8, 50, 52, 57], have been shown to
be consistent under certain conditions. Moreover, one would like to learn the convergence rate for a
consistent classifier, i.e., how many samples are required to obtain a risk that is close to the optimal
risk by a certain small number. This property has been extensively studied for SVM in [3, 7, 14,
49, 51, 58, 62, 63]. The rate of convergence for LDA is investigated in [25] and for KNN is studied
in [13, 18, 26, 32] and the references therein.

In this paper, we study the consistency property of the Nearest SubSpace (NSS) classifier. We prove
its strong consistency under certain conditions. Furthermore, we study the rate of convergence for the
NSS classifier by providing a non-asymptotic bound for the difference between its risk and the optimal
risk. This non-asymptotic bound tells how many samples are required to obtain risk that is close to the
Bayes risk by a certain small number with overwhelming probability. To our best knowledge, this is
the first work on the consistency and convergence rate for the NSS algorithm. Although the techniques
used to derive these results have been studied before [19, 36, 37, 57, 66], they have never been applied
to the NSS. Our main contribution is to apply these techniques to thoroughly study the NSS classifier
and obtain the first result about its consistency and rate of convergence. In the rest of the paper, we will
begin with a description of the NSS algorithm and our main theorems (Section 2), followed by their
proof (Section 3 and 4) and simulations (Section 5).

2. The NSS Algorithm and our Main Theorems

For most of the applications, it suffices to assume that X ⊂B(0,M)⊂RD and Y = {1, · · · ,K}, where
B(0,M) is the ball centered at the origin with radius M and D and K are some positive integers. We
will restrict ourselves to this case throughout the paper.
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2.1 The NSS Algorithm

The NSS classifier assumes data lie on multiple affine subspaces, finds an estimate for these subspaces
and assigns each instance to the nearest subspace. The following is a summary of the NSS algorithm.

Algorithm 1 Nearest Subspace (NSS) Classification

Require: {(xi,yi)}n
i=1 ⊂X ×Y and d: intrinsic dimension, some positive integer and d < D.

Ensure: A function f : X → Y .
for k = 1 to K do

ûk =
1
nk

∑
xi∈Ck

xi; Ck = {xi : yi = k}; nk = |Ck|.

B̂k = argmin
B∈RD×d

BT B=Id

∑
xi∈Ck

‖(I−BBT )(xi− ûk)‖2. (2.1)

end for
f̂ (x) = argmin

k
‖(I− B̂kB̂T

k )(x− ûk)‖2.

Note that the closed form solution to (2.1) is the Singular Value Decomposition (SVD) of the cen-
tered data matrix for the kth class; such a data matrix consists of

(
(xk1 − ûk), · · · , (xknk

− ûk)
)

with
xk1 , · · · ,xknk

∈Ck.

2.2 Notations

Denote Lk as the underlying d-dimensional subspace for the kth class; denote uk as the underlying center
and Bk as an underlying orthonormal basis for the kth class. Let Pk = BkBT

k and P̂k = B̂kB̂T
k . Denote L̂k

as the subspace spanned by B̂k. Assume that (x1,y1), ...,(xn,yn) are i.i.d. samples of random variable
(X ,Y ); X ∈ RD and Y ∈ {1, . . . ,K}. Then let Σk = EX∈Ck(X −uk)(X −uk)

T , and let λ k
1 > · · · > λ k

D be
the eigenvalues of Σk. Define δ k

d = δd(Σk) := 1
2 (λ

k
d −λ k

d+1). On the other hand, let Σ̂k =
1
nk

∑
nk
i=1(xi−

ûk)(xi− ûk)
T . Let n̄ = min(n1, · · · ,nK) and B(uk,M) represent a ball with center uk and radius M.

Eventually, we denote ‖A‖ as the spectral norm of a matrix A and tr(A) as its trace and we use I to
represent the identity matrix.

2.3 The Consistency Result

As mentioned in Section 1, a desirable property for classifiers is consistency. Denote hn to be any
classification rule determined from n samples {(xi,yi)}n

i=1, f ∗ as the optimal Bayes rule, i.e., f ∗ =
argmin f R( f ) and R∗ := R( f ∗) as its risk. Now we define strong consistency in the following sense.

Definition 1 (Strong Consistency) A classification rule hn is said to be strongly consistent if

R(hn)→ R∗ a.s. as n→ ∞

Since the NSS classifer is also based on n samples {(xi,yi)}n
i=1, from now on, we denote it as f̂n for

it for the rest of the paper. Then we obtain the following theorem for the NSS classifier described in
Algorithm 1.
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Theorem 1 The NSS classifier f̂n is strongly consistent, i.e., R( f̂n)→ R∗ a.s. as n→ ∞, when the
following assumptions hold.

(1) (x1,y1), ...,(xn,yn) are i.i.d. samples of random variable (X ,Y ); X ∈ RD and Y ∈ {1, . . . ,K}.
(2) P(Y = i) = 1

K .
(3) P(X |Y = k) =

∫
X∈Ck

g(dist(X ,Lk))dX , where g(·) decreases exponentially w.r.t. dist2(X ,Lk).
(4) ‖X‖6M.

This theorem reveals that the average prediction error of NSS converges to the optimal prediction
error under certain conditions. It is a similar but slightly weaker result in contrast to that for LDA in [57],
since the above condition (3) is stronger than that for LDA. Note that both results are about consistency
for a class of distributions. On the other hand, the consistency results for KNN, SVM and some boosting
methods are for all distributions, and thus are more general [4, 8, 50, 52].

2.4 The Non-Asymptotic Result

Theorem 2 With probability at least 1−3e−s, we have

06 R( f̂n)−R∗ 6C(a,M,M1,δd)

√
s+ log(max(b,8))

n̄

under the following assumptions for some constants C and b. An explicit form of C will be given in
the proof and b is defined in the following assumption (6).

(1) (x1,y1), ...,(xn,yn) are i.i.d. samples of random variable (X ,Y ); X ∈ RD and Y ∈ {1, . . . ,K}.
(2) P(Y = i) = 1

K .
(3) P(X |Y = k) =

∫
X∈Ck

r(dist(X ,Lk))dX , where r(·) is a decreasing function.
(4) r(·) is twice differentiable and r′(·), r′′(·)6M1, for k = 1, · · · ,K.
(5) ‖X‖6M and if X ∈Ck, then ‖X−uk‖6 a, for k = 1, · · · ,K.

(6) nk > s+ log(max(b,8)) and 8a2
√

s+log(max(b,8))
nk

6 δd
2 ; where b = b1 = · · ·= bK and δd = δ 1

d =

· · ·= δ K
d , bk = 4 tr(EZ2

k )

‖EZ2
k ‖

and Zk =
1
nk
[(X −uk)(X −uk)

T −Σk] for X ∈Ck. Due to the above assumption

(3), both b and δd are independent of k.

This theorem provides a non-asymptotic bound for the difference between the average prediction
error of NSS and the optimal prediction error. Note that in the assumption (5), the two inequalities are
not independent; in fact, one inequality can imply the other. We present both of them in order to obtain
a better estimation for the constant C; in real problems a could be much less than M. The details will
be found in the proof of Theorem 2. Note that Theorem 2 implies the convergence of R( f̂n) to R∗ (as
n→ ∞) in probability, which is weaker than that of Theorem 1. This is also consistent with the fact that
the the assumption (3) of Theorem 2 is more general than that for Theorem 1.

On the other hand, Theorem 2 shows that the convergence rate for NSS is O(n−1/2). In fact, the best
rate for SVM is up to O(n−1) [49, 51] and LDA has convergence rate O(n−1 logD)) [25]. As long as
the dimension is not of the exponential order of n, the rate for LDA is better than that for NSS. KNN
is proven to be of O(n−2/D) [32]. Therefore NSS has a better rate when D is large. In summary, the
convergence rate for NSS is weaker than the best rate obtained by other classification algorithms thus
far. It is worth to note that some of the early work [63] give similar rate as O(n−1/2) for SVM.
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2.5 Discussions

The NSS algorithm is a very simple and basic classification method; it assumes linear structure in data.
However, its decision boundary is more complex than linear boundaries. Models like NSS have their
limitations. Although we have given examples where real data can be well approximated by multiple
subspaces in the introduction, in practice, simple models like NSS often are not satisfied. However, they
are important for the following reasons: (1) They are easy to compute and analyze. (2) They often have
good interpretations, critical in many applications. (3) They might be the best that can be done when the
available training data are limited. (4) They are the foundation from which more complex models can
be generalized (see [27] for more discussion). Therefore, it is important to study these simple methods
thoroughly, even if in practice they are no longer state-of-the-art.

The NSS method has been modified and extended through different methods: localization, the ker-
nel trick and the hybrid model. The local subspace methods find, for the investigated data sample, their
nearest neighbors in each class and attribute by their distances to the subspace spanned by these neigh-
bors [12, 33, 34, 48, 59]. Due to the fact that only an inner product is needed in the NSS algorithm,
it can be naturally extended by the kernel trick, where the original data are embedded into a higher
dimensional space and subspace structures are learned there [2, 33, 35, 54, 64]; these two techniques
are combined in [65]. Another direction is to represent each class by multiple subspaces [33, 34, 53],
where [53] also uses a more general metric than the Euclidian distance. All of these extended techniques
define nonlinear decision boundaries and the recent works [12, 34, 53] have shown their state-of-the-art
performance.

3. Proof of Theorem 1

In this section, we give a complete proof of Theorem 1 following [57].

3.1 Preliminaries

We first describe the problem in detail and prepare to prove the theorem. Consider a classification
problem, where the goal is to assign an individual instance to one of K classes, given n observations of
(X ,Y ). To do this, the space RD is partitioned into subsets H1, . . . ,HK such that, for k = 1, . . . ,K, the
individual instance is classified to be in group k when X ∈ Hk. This procedure generates a discriminant
rule as a mapping f : RD→{1, . . . ,K} that takes the value f (X) = k whenever the individual is assigned
to the kth group, and this can be written as f (X) = ∑

K
k=1 k1Hk(X), where 1Hk(X) is the indicator function

of the subset Hk.
Let Y be the discrete random variable (class index or group label) which represents the true member-

ship of the individual under study. Denote the class prior probabilities πk = P[Y = k]> 0, ∑
K
k=1 πk = 1

and k = 1, . . . ,K. Furthermore, assume there exist density functions gk(X) such that P[X ∈A |Y = k] =∫
A gk(X)dX , k = 1, . . . ,K for A , a subset of RD.

Given (X ,Y ), the rule f (X) = ∑
K
k=1 kIHk(X) is in error when f (X) 6= Y and its probability of mis-
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classification is computed as:

R( f ) = E(X ,Y )1( f (X) 6= Y ) = P[ f (X) 6= Y ] = 1−P[ f (X) = Y ]

= 1−
K

∑
k=1

P[X ∈ Hk, Y = k] = 1−
K

∑
k=1

P[Y = k]P[X ∈ Hk|Y = k]

= 1−
K

∑
k=1

πk

∫
Hk

gk(X)dX . (3.1)

The rule f ∗ = ∑
K
k=1 k1H∗k

(X) that minimizes (3.1), or the Bayes rule, is given by the partition

H∗k = [X : πkgk(X) = max
16 j6K

π jg j(X)], k = 1, . . . ,K.

Then the corresponding optimal error is:

R∗ = R[ f ∗(X)] = 1−
K

∑
k=1

πk

∫
H∗k

gk(X)dX .

In general, both πk and gk are unknown, so rules used in practice are sample based rules of the
form f̂n(X) = ∑

K
k=1 kIĤk,n

(X), where the subsets Ĥk,n depend on the data set Ωn = {(xi,yi)}n
i=1 formed

by n i.i.d. observations from (X ,Y ). The appropriate measure of error of a sample rule f̂n(X) is Rn =
P[ f̂n(X) 6= Y ].

3.2 Proof of Theorem 1

LEMMA 3.1 Assume πk =
1
K and let ĝk,n(X) be an estimate of gk(X) from Ωn , for k = 1, · · · ,K. Let

f̂n(X) be the classifier derived from ĝk,n(X), i.e., f̂n(X) = argmaxk ĝk,n(X). Then

06 Rn−R∗ 6
1
K

K

∑
k=1

∫
|gk(X)− ĝk,n(X)|dX .

This lemma gives a useful bound for 6 Rn−R∗. A similar result of Lemma 3.1 can be found in the
Theorem 1 in [20] (p. 254). We provide our proof of Lemma 3.1 in Appendix A.

Proof of Theorem 1. Due to condition (2), we have

H∗k = [X : gk(X) = max
16 j6K

g j(X)].

On the other hand, based on the assumption (3), the density functions can be written as

gk(t) =C1(d)exp(−αt),

t = (X−uk)
T (I−Pk)(X−uk)

for some α > 0 and constant C(d) and Pk = BkBT
k with Bk being the orthonormal basis for Lk.

Then the classifier generated by the Algorithm 1 can be written as:

f̂n(X) =
K

∑
k=1

kIĤk,n
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with the following notation:

P̂k = B̂kB̂T
k

ĝk,n(x) =C1(d)exp(−α(X− ûk)
T (I− P̂k)(X− ûk))

Ĥk,n = [X : ĝk,n(X) = max
16 j6K

ĝ j,n(X)]

Thus the NSS classifier can be considered as a plug-in version of the Bayes rule. By Lemma 3.1,
the difference Rn−R∗ can be bounded in the form

06 Rn−R∗ 6
1
K

K

∑
k=1

∫
RD
|gk(X)− ĝk,n(X)|dX

For each fixed 16 k 6 K, we have

06
∫
RD
|gk(X)− ĝk,n(X)|dX 6

∫
RD

gk(X)+ ĝk,n(X)dX < ∞

Therefore, it suffices to show that ĝk,n→ gk a.s and due to the continuity of g(·), to show ûk → uk

and P̂k→ Pk a.s. The fact that ûk and P̂k are the maximum-likelihood estimations (MLE) of uk and Pk
completes the proof. �

4. Proof of Theorem 2

In this section, we give a complete proof of Theorem 2.

4.1 Preliminary Results

We first present several lemmas that will lead to Theorem 2. For the following lemmas, we make
assumptions (1) and (5) of Theorem 2.

LEMMA 4.1 ([36], Lemma 11) For all s such that s+ log(8)6 nk, with probability > 1− e−s, we have

‖uk− ûk‖6 2a

√
s+ log(8)

nk
.

LEMMA 4.2 For all s such that s+ log(max(b,8))6 nk and 8a2
√

s+log(max(b,8))
nk

6 δd
2 , with probability

at least > 1−2e−s, we have

‖Pk− P̂k‖6
8a2

δd

√
s+ log(max(b,8))

nk
.

A very similar version of Lemma 4.2 can be found in [36]. Our version treats the constants slightly
different. For completeness, we will give a proof of Lemma 4.2 in Appendix B.

LEMMA 4.3 Assume that X belongs to the kth class. For all s such that s+ log(max(b,8)) 6 nk and

8a2
√

s+log(max(b,8))
nk

6 δd
2 , with probability at least > 1−3e−s, we have

|dist(X ,Lk)−dist(X , L̂k)|6 (2a+
16a2M

δd
)

√
s+ log(max(b,8))

nk
.
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where dist(X , L̂k) := ‖(I− P̂k)(X− ûk)‖.
Proof.

dist(X ,Lk)−dist(X , L̂k) = ‖(I−Pk)(X−uk)‖−‖(I− P̂k)(X− ûk)‖
= ‖(I− P̂k + P̂k−Pk)(X− ûk + ûk−uk)‖−‖(I− P̂k)(X− ûk)‖
6 ‖(I− P̂k)(ûk−uk)‖+‖(P̂k−Pk)(X− ûk)‖
6 ‖ûk−uk‖+2M‖P̂k−Pk‖

Applying Lemma 4.1 and 4.2 completes the proof. �

4.2 Proof of Theorem 2

Now we prove Theorem 2 in this section.

Proof of Theorem 2. Let r̂k,n := r(dist(X , L̂k)). Then NSS assigns a sample x to the class argmin
k

dist(x, L̂k)),

i.e., to the class argmax
k

r̂k,n. Therefore, by Lemma 3.1, we know

06 Rn−R∗ 6
1
K

K

∑
k=1

∫
|rk(dist(X ,Lk))− rk(dist(X , L̂k))|dX .

Now we need to analyze |rk(dist(X ,Lk))− rk(dist(X , L̂k))|. Let tk = dist(X ,Lk) and t̂k = dist(X , L̂k).
Then the Taylor’s theorem gives

rk(tk) = rk(t̂k)+ r′k(t̂k)(tk− t̂k)+
r′′k (a0)

2
(tk− t̂k)2

for some number a0 between tk and t̂k. Thus

|rk(tk)− rk(t̂k)|6M1|tk− t̂k|+
M1

2
|tk− t̂k|2

By Lemma 4.3 and the fact that s+ log(max(b,8))6 nk, we have

|rk(tk)− rk(t̂k)|6 2M1[(a+
8a2M

δd
)+(a+

8a2M
δd

)2]

√
s+ log(max(b,8))

nk

Therefore,

06 Rn−R∗ 6 2KV M1[(a+
8a2M

δd
)+(a+

8a2M
δd

)2]

√
s+ log(max(b,8))

n̄

where V is the volume of the domain of X and is6MD. Putting C(a,M,M1,δd) = 2KV M1[(a+ 8a2M
δd

)+

(a+ 8a2M
δd

)2] completes the proof. �

5. Experiments

In this section, we present some experiments that are related to our theoretical results. Our experiments
consist of two parts. In the first part, the simulated data generally follow the assumptions of our theorems
(or at least do so with high probability), while the data in the other part do not.
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5.1 Simulations under the Assumptions of Theorem 1 and 2

5.1.1 Convergence Rate.

DATA. Our data are simulated as follows. Let D = 3, K = 2. We generate our samples from two
Gaussians with means µ1 = (1,1,1)T , µ2 = (−1,−1,−1)T and variances

Σ1 =

2 0 0
0 λ 0
0 0 λ

 , Σ2 =U

2 0 0
0 λ 0
0 0 λ

UT ,

where UTU = UUT = I. For the training set, we generate n1 and n2 points for the two classes respec-
tively. So the total number of training samples is n = n1 +n2. For the testing set, we do so for N1 and
N2 points. We apply the NSS algorithm with d = 1. The testing set is used to compute the risk R( f̂n)
and R∗. We let λ = 0.5 and n1 = n2 vary from 5 to 500.

RESULT. Since our theoretical result gives a non-asymptotic bound with high probability. We repeat
the process of generating the training data and learning the NSS classifier 100 times and obtain 100
measurements for R( f̂n). Then we plot the minimum, 25%, 50% and 75% percentiles of R( f̂n)−R∗

against
√

n in the left of Figure 1. The repetition procedure is run for all the experiments in this paper;
whenever we plot R( f̂n)−R∗, we always plot these percentiles. From the left figure of Figure 1, we can
observe that R( f̂n)−R∗ actually decreases faster than the order of n−1/2.

10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

√
n

R
n −

 R
*

 

 

minimum
25% pertcentile
median
75% pertcentile

0.6 0.7 0.8 0.9
0

0.005

0.01

0.015

δ
d

R
n −

 R
*

 

 

minimum
25% percentile
median
75% percentile

FIG. 1: Change of R( f̂n)−R∗ w.r.t.
√

n on the left and w.r.t. δd on the right

5.1.2 Effect of the Eigengap δd .

DATA. We follow Section 5.1.1 to generate our data. However, we fix n = 1000 and vary λ from 0.01
to 0.8.
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RESULT. We compute the eigengap δd = (2− λ )/2 and plot R( f̂n)−R∗ against δd in the right of
Figure 1. It can be seen that R( f̂n)−R∗ decreases as δd increases; the rate of change is close to but
slower than the linear rate.

5.1.3 Effect of the Ambient Dimension D.

DATA. We follow Section 5.1.1 to generate our data. However, we fix n = 1000 and vary D from 3 to
20. To ensure the same separation between classes we let µ1 =(1, · · · ,1)T , µ2 =(−1,−1,−1,1, · · · ,1)T .
Our variances follow the same form as in Section 5.1.1, i.e., the first eigenvalue are 2 and the rest are
λ = 0.5.

RESULT. The quantity R( f̂n)−R∗ versus D is displayed in the left of Figure 2. We see that NSS favors
the high dimensions while both the eigengap δd and the separation between classes are fixed.

5 10 15

2

4

6

8

10

12

x 10
−3

D

R
n −

 R
*

 

 

minimum
25% percentile
median
75% percentile

2 4 6 8

0.01

0.02

0.03

0.04

0.05

d

R
n −

 R
*

 

 

minimum
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FIG. 2: Change of R( f̂n)−R∗ w.r.t. D on the left and w.r.t. d on the right

5.1.4 Effect of the Intrinsic Dimension d.

DATA. We follow Section 5.1.1 to generate our data. However, we fix n = 1000, D = 20 and vary d
from 1 to 8. To ensure the same separation between classes we let µ1 =(1, · · · ,1)T , µ2 =(−1,−1,−1,1, · · · ,1)T .
Our variances follow the same form as in Section 5.1.1, i.e., the first d eigenvalues is 2 and the rest D−d
eigenvalues are λ = 0.5.

RESULT. The quantity R( f̂n)−R∗ versus d is displayed in the right of Figure 2. It can be seen that
R( f̂n)−R∗ increases w.r.t. d at first and then starts to drop from d = 4. Our understanding is that learning
the projector of a subspace with higher intrinsic dimension requires more training samples to obtain the
same accuracy. However, on the other hand, while the intrinsic dimension increases, the noise decreases
in our setting. This tradeoff explains the turning point in the right figure of Figure 2
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5.2 Simulations in More General Conditions

5.2.1 Different P(X |Y = k).

DATA. We follow Section 5.1.1 to generate our data. However, our covariance matrices are:

Σ1 =

1.5 0 0
0 λ 0
0 0 λ

 , Σ2 =U

2.5 0 0
0 λ 0
0 0 λ

UT ,

RESULT. The quantity R( f̂n)−R∗ versus
√

n is displayed in the left of Figure 3. We can observe that
R( f̂n) still converges to R∗ at a rate faster than n−1/2.

5.2.2 Unequal P(Y = k).

DATA. We follow Section 5.1.1 to generate our data. However, in this experiment, we let n2 = 3n1
and let n1 vary from 5 to 500.

RESULT. We plot R( f̂n)− R∗ against
√

n in the right of Figure 3. It can be seen that R( f̂n) still
converges to R∗ at a rate faster than n−1/2.
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FIG. 3: Change of R( f̂n)−R∗ w.r.t.
√

n. On the left, P(X |Y = k) are different ; on the right, P(Y = k)
are not equal

5.3 Discussions

To summarize, we observe faster convergence rate in the above example than that in Theorem 2.The
effects of the ambient dimension D and the intrinsic dimension d are very interesting and they could be
a guide for practice. Moreover, the last two examples demonstrate that the NSS classifier still converges
to the Bayes rule even when some of the assumptions in our theorems are not satisfied. Last but not least,
the separation between the classes should affect the convergence and it is not in our current bound yet.
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These experiments practically verify our theoretical results and motivate us to improve our theoretical
results further in the future.

6. Conclusion

In this paper, we reviewed a simple classification algorithm (NSS) based on the model of multiple
subspaces. We proved its strong consistency under certain conditions, which means that under these
conditions, the prediction error of NSS on average converges strongly to that of the optimal classifier.
Other than this, we provided a non-asymptotic bound for the difference between the NSS risk and the
Bayes risk (we will call this different “error”). This result tells how many data points are required for
obtaining an error that is less than a certain small number with high probability. Our simulations also
provide many interesting observations and practically verify the theoretical results.

By studying the consistency property of NSS, we are inspired to further explore subspace-based
classification methods along the following directions in the future. First, NSS finds a good estimation
for the underlying subspace models by minimizing the sum of squares of fitting errors. However, for
the purpose of classification, it is more helpful to obtain models which can “separate” or “discriminate”
classes. Therefore, in order to improve the classification performance, some separation measure can be
taken into account. In fact, an advanced supervised learning method based on multiple subspaces has
been proposed [53]. It would be fruitful to analyze this method or other variants theoretically.

Moreover, a general way to find a good classifier is to minimize an empirical risk function, which
is typically defined as Remp( f ) = ∑

n
i=11( f (xi) 6= yi). This idea can be combined with the multiple

subspaces model. Similar approaches to that in [56] can be applied to analyze its consistency.
Finally, our experiments suggest that it is promising to obtain convergence rate that is faster than

O(n−1/2). It is worth to explore this direction further for an improved rate.
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A. Proof of Lemma 3.1

Proof. Since πk =
1
K , we have H∗k = [X : gk(X) = max16 j6K g j(X). Thus,

R∗ = 1− 1
K

K

∑
k=1

∫
H∗k

gk(X)dX = 1− 1
K

∫
max

k
gk(X)dX

6 1− 1
K

∫
g f̂n(X)dX = Rn
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On the other hand,

Rn−R∗ =
1
K

∫
(max

k
gk(X)−g f̂n(X))dX

=
1
K

∫
(max

k
gk(X)− ĝ f̂n,n(X))dX +

1
K

∫
(ĝ f̂n,n(X)−g f̂n(X))dX

=
1
K

∫
(max

k
gk(X)−max

k
ĝk,n(X))dX +

1
K

∫
(ĝ f̂n,n(X)−g f̂n(X))dX

6
1
K

K

∑
k=1

∫
|gk(X)− ĝk,n(X)|dX .

�

B. Proof of Lemma 4.2

Theorem 3 ([37], Theorem 2.1) Let Z1, · · · ,Zn ∈ RD×D be a sequence of independent symmetric
random matrices such that EZi = 0 and ‖Zi‖6U a.s., 16 i6 n. Let

σ
2 :=

∥∥∥∥ n

∑
i
EZ2

i

∥∥∥∥
Then for any s> 1, ∥∥∥∥ n

∑
i
EZi

∥∥∥∥6 2max
(

σ

√
t + log(B̄),U(t + log(B̄))

)

with probability at least 1− e−s, where B̄ := 4tr
( n

∑
i=1

EZ2
i
)
/σ

2.

Theorem 4 ([19], [66]) If ‖Σ̂k−Σk‖6 δ k
d/2, then∥∥∥∥Pk− P̂k

∥∥∥∥6 ‖Σ̂k−Σk‖
δ k

d
.

Now we use Theorem 3 and 4 to prove Lemma 4.2 following [36].
Proof of Lemma 4.2. First, we show that with probability at least 1−2e−s,

‖Σ̂k−Σk‖6 8a2

√
s+ log(max(bk,8))

nk
(A.1)

Since

‖Σ̂k−Σk‖ = ‖ 1
nk

∑
xi∈Ck

(xi−uk)(xi−uk)
T − (uk− ûk)(uk− ûk)

T −Σk‖

= ‖ 1
nk

∑
xi∈Ck

(xi−uk)(xi−uk)
T −Σk‖+‖(uk− ûk)(uk− ûk)

T‖
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Let Zki =
1
nk

[
(xki −uk)(xki −uk)

T −Σk
]
, where xki ∈Ck. For simplicity, we write Zi for Zki and xi for

xki for the rest of the proof. Then, we have

EZi = 0, ‖Zi‖6
1
nk

(‖(xi−uk)(xi−uk)
T‖+‖Σk‖)6

1
nk

(a2 +‖Σk‖)

‖Σk‖ = ‖EX∈Ck(X−uk)(X−uk)
T‖6 EX∈Ck(‖(X−uk)(X−uk)

T‖)6 a2

Thus we have

‖Zi‖6
2a2

nk

Moreover,

σ
2 := ‖

nk

∑
i=1

EZ2
i ‖= ‖

nk

∑
i=1

E
1
n2

k

[
(xi−uk)(xi−uk)

T −E(xi−uk)(xi−uk)
T
]2

‖

=
1
nk
‖E
[
(x1−uk)(x1−uk)

T ]2−Σ
2
k ‖6

1
nk

(
‖E[(x1−uk)(x1−uk)

T ]2‖+‖Σ 2
k ‖
)

6
2a4

m

Applying Theorem 3 gives

‖ 1
nk

∑
xi∈Ck

(xi−uk)(xi−uk)
T −Σk‖ = ‖

nk

∑
i

Zi‖6 2max
(√

2
nk

a2
√

s+ log(bk),
2a2

nk

(
s+ log(bk)

))

= 2a2

√
2
(
s+ log(bk)

)
nk

max(1,

√
2
(
s+ log(bk)

)
nk

)

6 4a2

√
s+ logbk

nk

where bk = 4tr
( nk

∑
i=1

EZ2
i

)
/σ

2 = 4
tr(EZ2

1)

‖EZ2
1‖

. Combining this result and Lemma 4.1 implies (A.1).

The fact that 8a2
√

s+log(max(bk,8))
nk

6
δ k

d
2 and Theorem 4 complete the proof.

�
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